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2 Measures

The basic idea behind integration theory via measures may be roughly de-
scribed as follows: Given a space (set) we want to associate "sizes" to
"pieces" of the space. To do this we �rst have to make precise what we
mean by a "piece", i.e., what subsets we admit as "pieces". This is the
purpose of the concept of a σ-algebra and a measurable space. Given that
we know what a piece is, we want to assign a number to it, its "size", in
such a way that sizes add up appropriately when we join pieces. This is pro-
vided by the concept of a measure. Then, we can declare the integral for the
characteristic function on a piece to be the size of the piece. Approximating
more arbitrary functions by linear combinations of characteristic functions
for pieces then yields a general notion of integral.

2.1 σ-Algebras and Measurable Spaces

De�nition 2.1 (Boolean Algebra). Let A be a set equipped with three
operations: ∧ : A×A → A, ∨ : A×A → A and ¬ : A → A and two special
elements 0, 1 ∈ A. Suppose these satisfy the following properties:

• (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z) ∀x, y, z ∈ A.
(associativity)

• x ∧ y = y ∧ x and x ∨ y = y ∨ x ∀x, y ∈ A. (commutativity)

• x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z) ∀x, y, z ∈ A.
(distributivity)

• x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x ∀x, y ∈ A. (absorption)

• x ∧ ¬x = 0 and x ∨ ¬x = 1 ∀x ∈ A. (complement)

Then, A is called a Boolean algebra.

Proposition 2.2. Let A be a Boolean algebra. Then, the following properties

hold:

x ∧ x = x, x ∨ x = x, x ∧ 0 = 0, x ∧ 1 = x, x ∨ 0 = x, x ∨ 1 = 1 ∀x ∈ A.

Proof. Exercise.

Exercise 9. Show that the set with two elements 0, 1 forms a Boolean
algebra. This is important in logic, where 0 stands for "false" and 1 for
"true".

Exercise 10. Let S be a set. Show that the set P(S) of subsets of S forms
a Boolean algebra, where ∨ = ∪ is the union, ∧ = ∩ is the intersection and
¬ is the complement of sets.
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De�nition 2.3 (Algebra of sets). Let S be a set. A subset M of the set
P(S) of subsets of S is called an algebra of sets i� it is a Boolean subalgebra
of P(S).

Proposition 2.4. Let S be a set and M a subset of the set P(S) of subsets
of S. Then M is an algebra of sets i� it contains the empty set and is closed

under complements, �nite unions, and �nite intersections.

Proof. Immediate.

Exercise 11. Show that the above proposition remains true if we erase
either the requirement for closedness under �nite unions or the requirement
for closedness under �nite intersections.

De�nition 2.5. Let S be a set and M an algebra of subsets of S. We call
M a σ-algebra of sets i� it is closed under countable unions and countable
intersections.

Exercise 12. Show that the above de�nition remains unchanged if we re-
move either the requirement for closedness under countable unions or closed-
ness under countable intersections.

De�nition 2.6. Let S be a set and B a subset of the set P(S) of subsets of
S. Then, the smallest σ-algebra M on S containing B is called the σ-algebra
generated by B.

Exercise 13. Justify the above de�nition by showing that the smallest σ-
algebra in the sense of the de�nition always exists.

De�nition 2.7. Let S be a set and B a subset of P(S). Then, B is called
monotone i� it satis�es the following properties:

• Let {An}n∈N be a sequence of elements of B such that An ⊆ An+1.
Then,

⋃
n∈NAn ∈ B.

• Let {An}n∈N be a sequence of elements of B such that An ⊇ An+1.
Then,

⋂
n∈NAn ∈ B.

Proposition 2.8. 1. A σ-algebra is monotone. 2. An algebra that is mono-

tone is a σ-algebra.

Proof. Exercise.

Proposition 2.9 (Monotone Class Theorem). Let S be a set and N an

algebra of subsets of S. Then, the smallest set M of subsets of S which

contains N and is monotone is the σ-algebra generated by N .
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Proof. For each A ∈ M and consider

MA := {B ∈ M : A ∩B ∈ M, A ∩ ¬B ∈ M,¬A ∩B ∈ M}.

It is easy to see that MA is monotone. [Exercise.Show this!] Furthermore,
if A ∈ N , then N ⊆ MA since N is an algebra. So in this case M ⊆ MA

by minimality of M and consequently M = MA. Thus, for B ∈ M we have
B ∈ MA and hence A ∈ MB if A ∈ N . So, N ⊆ MB and by minimality we
conclude M = MB for any B ∈ M. But this means that M is an algebra.
Thus, by Proposition 2.8.2, M is a σ-algebra. Furthermore, by minimality
and Proposition 2.8.1, it is the σ-algebra generated by N .

De�nition 2.10. Let S be a set and M a σ-algebra of subsets of S. Then,
we call the pair (S,M) a measurable space and the elements ofMmeasurable

sets.

De�nition 2.11. Let S be a measurable space and U a subset of S. Then,
the σ-algebra on S intersected with U is called the induced σ-algebra on U .

De�nition 2.12. Let S be a topological space. Then, the σ-algebra gener-
ated by the topology of S is called the algebra of Borel sets. Its elements
are called Borel measurable.

2.2 Measurable Functions

As we see the concept of a measurable space is very similar to the concept of
a topological space. Both are based on a set of subsets closed under certain
operations. We can push this analogy further and consider the analog of a
continuous function: a measurable function.

De�nition 2.13. Let S, T be measurable spaces. Then a map f : S →
T is called measurable i� the preimage of every measurable set of T is a
measurable set of S. If either T or S or T and S are topological spaces
instead we call f measurable i� it is measurable with respect to the generated
σ-algebra(s) of Borel sets.

Proposition 2.14. Let S, T, U be measurable spaces, f : S → T and g :
T → U measurable. Then, g ◦ f : S → U is measurable.

Proof. Immediate.

Proposition 2.15. Let S be a measurable space, T a topological space and

f : S → T . Then, f is measurable i� the preimage of every open set is

measurable. Also, f is measurable i� the preimage of every closed set is

measurable.

Proof. Exercise.
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Corollary 2.16. Let S and T be topological spaces and f : S → T a contin-

uous map. Then, f is measurable.

Proposition 2.17. Let S be a measurable space, T and U topological spaces,

f : S → T × U . Denote by fT : S → T and fU : S → U the component

functions. If the product f : S → T × U is measurable, then both fT and fU
are measurable. Conversely, if T and U are second-countable and fT and fU
are measurable, then f is measurable.

Proof. First suppose that f is measurable. Then, fT = pT ◦ f , where pT
is the projection T × U → T . Since pT is continuous, it is measurable by
Corollary 2.16 and the composition fT is measurable by Proposition 2.14.
In the same way it follows that fU is measurable.

Conversely, suppose now that fT and fU are measurable. If V ⊆ T and
W ⊆ U are open sets, then f−1

T (V ) and f−1
U (W ) are measurable in S and

so is their intersection f−1(V × W ) = f−1
T (V ) ∩ f−1

U (W ). Since T and U
are second-countable, every open set in T ×U can be written as a countable
union of products of open sets in T and U [Exercise.Show this!]. But the
preimage of such a countable union in S under f−1 can be written as a
countable union of preimages. Since these are measurable, their countable
union is also measurable. It follows then from Proposition 2.15 that f is
measurable.

In the following K denotes either the �eld of real numbers R or the �eld
of complex numbers C.

Proposition 2.18. Let S be a measurable space, f, g : S → K measurable

and λ ∈ K. Then:

• |f | : x 7→ |f(x)| is measurable.

• f + g : x 7→ f(x) + g(x) is measurable.

• λf : x 7→ λf(x) is measurable.

• fg : x 7→ f(x)g(x) is measurable.

Proof. Exercise.

This shows in particular that measurable functions with values in R or C
form an algebra. Another important property of the set of measurable maps
is its closedness under pointwise limits. This can be formulated for the more
general case when the values are taken in a metric space.

Theorem 2.19 (adapted from S. Lang). Let S be a measurable space and

T a metric space. Suppose {fn}n∈N is a sequence of measurable functions

fn : S → T which converges pointwise to the function f : S → T . Then, f
is measurable.
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Proof. Let U be an open set in T . Suppose x ∈ f−1(U). Since {fn(x)}n∈N
converges to f(x) there exists m ∈ N such that x ∈ f−1

n (U) for all n > m. In
particular, x ∈

⋃∞
n=k f

−1
n (U) for any k ∈ N and so also x ∈

⋂∞
k=1

⋃∞
n=k f

−1
n (U).

Since this is true for any x ∈ f−1(U) we get

f−1(U) ⊆
∞⋂
k=1

∞⋃
n=k

f−1
n (U).

Consider now for all l ∈ N the open sets

Ul := {x ∈ U : d(x, y) > 1/l ∀y /∈ U}.

Then, U =
⋃∞

l=1 Ul and applying the above reasoning to each Ul we get,

f−1(U) ⊆
∞⋃
l=1

∞⋂
k=1

∞⋃
n=k

f−1
n (Ul).

Suppose now that x /∈ f−1(U) and �x l ∈ N. Since B1/l(f(x)) ∩ Ul = ∅
there exists m ∈ N such that x /∈ f−1

n (Ul) for all n > m. In partic-
ular, x /∈

⋂∞
k=1

⋃∞
n=k f

−1
n (Ul). Since this is true for any l ∈ N we get

x /∈
⋃∞

l=1

⋂∞
k=1

⋃∞
n=k f

−1
n (Ul). Since this is true for any x /∈ f−1(U) we

get, combining with the above result,

f−1(U) =
∞⋃
l=1

∞⋂
k=1

∞⋃
n=k

f−1
n (Ul).

Since fn is measurable for all n ∈ N the right hand side is measurable. We
have thus shown that preimages of open sets are measurable. By Proposi-
tion 2.15 this is su�cient for f to be measurable.

De�nition 2.20. Let S be a measurable space. A map f : S → K is called
a simple map i� it is measurable and takes only �nitely many values.

Proposition 2.21. Let S be a measurable space and f : S → K a map that

takes only �nitely many values. Then f is a simple map (i.e., is measurable)

i� the preimage of each of the values of f is measurable.

Proof. Exercise.

Proposition 2.22. The simple functions with values in K form a subalgebra

of the algebra of measurable functions with values in K.

Proof. Exercise.

Theorem 2.23 (adapted from S. Lang). Let S be a measurable space and

f : S → K measurable. Then, f is the pointwise limit of a sequence of simple

maps. If, moreover, f takes values in R+
0 , then the sequence can be chosen

to increase monotonically.
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Proof. Consider �rst the caseK = R. Fix n ∈ N. For each k ∈ {1, . . . , 2n+1n}
de�ne the interval Ik := [−n+ k−1

2n ,−n+ k
2n ). Also, de�ne I0 := (−∞,−n)

and I2n+1n+1 := [n,∞). Notice that R is the disjoint union of the measur-
able intervals Ik for k ∈ {0, . . . , 2n+1n + 1}. Now set Xk := f−1(Ik) for
all k ∈ {0, . . . , 2n+1n + 1}. Since the intervals Ik are measurable so are the
sets Xk. De�ne the function fn : X → R by fn(Xk) := −n + k−1

2n for all
k ∈ {1, . . . , 2n+1n+1} and fn(X0) := −n. It is easy to see that {fn}n∈N is a
sequence of simple functions that converge pointwise to f . [Exercise.Show
this!] Moreover, if f takes values in R+

0 only, the sequence is monotonically
increasing. [Exercise.Show this!] To treat the case K = C we decompose f
into its real and imaginary part. The sum of simple sequences for each part
is again a simple sequence.

2.3 Positive Measures

De�nition 2.24. Let {an}n∈N be a monotonously increasing sequence of
real numbers. Then we say that limn→∞ an = ∞ i� for any a ∈ R there
exists m ∈ N such that an > a for all n > m.

De�nition 2.25 (Positive Measure). Let S be a set with an algebra M of
subsets. Then, a map µ : M → [0,∞] is called a (positive) measure i� it is
countably additive, i.e., satis�es the following properties:

• µ(∅) = 0.

• Let {Un}n∈N be a sequence of elements of M such that Un ∩ Um = ∅
if n 6= m and such that

⋃
n∈N Un ∈ M. Then,

µ

(⋃
n∈N

Un

)
=
∑
n∈N

µ (Un) .

If U ∈ M, then µ(U) is called its measure. Moreover, a measurable space S
with σ-algebra M and positive measure µ : M → [0,∞] is called a measure

space.

We shall mostly be interested in the case whereM actually is a σ-algebra.
However, it will turn out convenient to keep the de�nition more general when
we consider constructing measures.

Proposition 2.26. Let S be a set, M an algebra of subsets of S and µ :
M → [0,∞] a measure. Then, the following properties hold:

• Let A,B ∈ M and A ⊆ B. Then, µ(A) ≤ µ(B).

• Let {An}n∈N be a sequence of elements of M such that
⋃

n∈NAn ∈ M.

Then,

µ

(⋃
n∈N

An

)
≤
∑
n∈N

µ(An).
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• Let {An}n∈N be a sequence of elements of M such that An ⊆ An+1 for

all n ∈ N and
⋃

n∈NAn ∈ M. Then,

µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An).

• Let {An}n∈N be a sequence of elements of M such that An ⊇ An+1 for

all n ∈ N and
⋂

n∈NAn ∈ M. If furthermore, µ(An) < ∞ for some

n ∈ N then,

µ

(⋂
n∈N

An

)
= lim

n→∞
µ(An).

Proof. Exercise.

Exercise 14. Check whether the following examples are measures.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S
is �nite de�ne µ(A) to be its number of elements. If A ⊆ S is in�nite
de�ne µ(A) = ∞. µ is called the counting measure.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S
is �nite de�ne µ(A) = 0. If A ⊆ S is in�nite de�ne µ(A) = ∞.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S is
countable de�ne µ(A) = 0. If A ⊆ S is not countable de�ne µ(A) = ∞.

• Let S be a set and consider the σ-algebra of all subsets of S. Let x ∈ S.
For A ⊆ S de�ne µ(A) = 1 if x ∈ A and µ(A) = 0 otherwise. µ is
called the Dirac measure with respect to x.

De�nition 2.27. Let S be a measure space and A ⊆ S a measurable subset.
We say that A is σ-�nite i� it is equal to some countable union of measurable
sets with �nite measure. We say that a measure is �nite respectively σ-
�nite i� the measure space is �nite respectively σ-�nite with respect to the
measure.

Exercise 15. Which of the examples of measures above are σ-�nite?

De�nition 2.28. Let (S,M, µ) be a measure space. If every subset of any
set of measure 0 is measurable, then we call (S,M, µ) complete.

Proposition 2.29. Let (S,M, µ) be a measure space. Then, there exists a

unique smallest σ-algebra M∗ that contains M and such that (S,M∗, µ) is
complete. (S,M∗, µ) is called the completion of (S,M, µ). Moreover, the

element of M∗ are precisely the sets of the form A ∪N , where A ∈ M and

N is a subset of a set of measure 0 in M.
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Proof. Exercise.

Proposition 2.30. Let (S,M, µ) be a measure space and f : S → K mea-

surable with respect to M∗. Then, there exists a function g : S → K such

that g is measurable with respect to M and g does not di�er from f outside

of a subset N ∈ M of measure 0.

Proof. By Theorem 2.23 there exists a sequence {fn}n∈N of simple maps
with respect to M∗ that converges pointwise to f . For each fn we can �nd
a set Nn ∈ M of measure 0 such that the function kn : S → K de�ned by
kn(p) = fn(p) if p ∈ S\Nn and kn(p) = 0 otherwise, is simple with respect to
M. (Exercise.Show this!) The set N :=

⋃∞
n=1Nn ∈ M has measure zero.

Moreover, gn : S → K de�ned by gn(p) = fn(p) if p ∈ S \N and gn(p) = 0
otherwise, is simple with respect to M. Moreover, the sequence {gn}n∈N
converges pointwise to g : S → K de�ned by g(p) = f(p) if p ∈ S \ N and
g(p) = 0 otherwise. Thus, by Theorem 2.19, g is measurable with respect to
M.

2.4 Extension of Measures

We now turn to the question of how to construct measures. We will focus
here on the method of extension. That is, we consider a measure that is
merely de�ned on an algebra of subsets and extend it to a measure on a
σ-algebra.

De�nition 2.31. Let S be a set and M a σ-algebra of subsets of S. Then,
a map λ : M → [0,∞] is called an outer measure on M i� it satis�es the
following properties:

• λ(∅) = 0.

• Let A,B ∈ M and A ⊆ B. Then, λ(A) ≤ λ(B). (monotonicity)

• Let {An}n∈N be a sequence of elements of M. Then,

λ

(⋃
n∈N

An

)
≤
∑
n∈N

λ (An) . (countable subadditivity)

Lemma 2.32. Let S be a set, N an algebra of subsets of S and µ a measure

on N . On the σ-algebra P(S) of all subsets of S de�ne the function λ :
P(S) → [0,∞] given by

λ(X) = inf

{∑
n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃
n∈N

An

}
.

Then, λ is an outer measure on P(S). Moreover, it extends µ, i.e., λ(A) =
µ(A) for all A ∈ N .
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Proof. Exercise.

De�nition 2.33. Let S be a set and λ an outer measure on the σ-algebra
P(S) of all subsets of S. Then, A ⊆ S is called λ-measurable i� λ(X) =
λ(X ∩A) + λ(X ∩ ¬A) for all X ⊆ S.

Lemma 2.34. Let S be a set and λ an outer measure on the σ-algebra P(S)
of all subsets of S. Let M be the set of subsets of S that are λ-measurable.

Then, M is a σ-algebra and λ is a complete measure on M.

Proof. Exercise.

Theorem 2.35 (Hahn). Let S be a set, N an algebra of subsets of S and µ
a measure on N . Then, µ can be extended to a σ-algebra M containing N
such that µ is a complete measure on M and for all X ∈ M we have

µ(X) = inf

{∑
n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃
n∈N

An

}
.

Proof. Exercise.

Proposition 2.36 (Uniqueness of Extension). Let S be a measurable space

with σ-algebra M and measures µ1, µ2. Suppose there is an algebra N ⊆
M generating M and such that µ(A) := µ1(A) = µ2(A) for all A ∈ N .

Furthermore, assume that µ is σ-�nite with respect to N . Then, µ1 = µ2

also on M.

Proof. Let {Xn}n∈N be a sequence of elements of N such that S =
⋃

n∈NXk

and Xn ⊆ Xn+1 and µ(Xn) < ∞ for all n ∈ N. (By σ-�niteness, there is
a sequence {Yk}k∈N with S =

⋃
k∈N Yk and µ(Yk) < ∞ for all k ∈ N. Now

set Xn :=
⋃n

k=1 Yk.) De�ne the �nite measures µ1,n(A) := µ1(A ∩Xn) and
µ2,n(A) := µ2(A ∩Xn) on M for all n ∈ N. Now, let Bn be the subsets of
M where µ1,n and µ2,n agree. By construction, N ⊆ Bn for all n ∈ N. We
show that the Bn are monotone.

Fix n ∈ N. Let {Ak}k∈N be a sequence of elements of Bn such that Ak ⊆
Ak+1 for all k ∈ N and set A :=

⋃
k∈NAk. Then, using Proposition 2.26,

µ1,n(A) = lim
k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).

So, A ∈ Bn. Now, let {Ak}k∈N be a sequence of elements of Bn such that
Ak ⊇ Ak+1 for all k ∈ N and set A :=

⋂
k∈NAk. Again using Proposition 2.26

we get (note that the �niteness of the measure is essential here),

µ1,n(A) = lim
k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).

So, A ∈ Bn. Hence, Bn is monotone and by Proposition 2.9 we must have
M ⊆ Bn and hence M = Bn.

Thus, µ1,n = µ2,n for all n ∈ N. But then, µ1 = limn→∞ µ1,n =
limn→∞ µ2,n = µ2. This completes the proof.
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Proposition 2.37. Let (S,M, µ) be a measure space. Let N be an algebra

of subsets of S that generates M. Denote the completion of M with respect

to µ by M∗. Then, for any X ∈ M∗ with �nite measure and any ε > 0 there

exists A ∈ N such that

µ((X \A) ∪ (A \X)) < ε.

Proof. Let X ∈ M∗. By Hahn's Theorem 2.35 there exists a sequence
{An}n∈N of disjoint elements of N such that X ⊆

⋃
n∈NAn and

∞∑
n=1

µ(An) < µ(X) + ε/2.

Now �x k ∈ N such that

∞∑
n=k+1

µ(An) < ε/2.

Set A :=
⋃k

n=1An. Then, on the one hand,

µ(A \X) ≤ µ

(( ∞⋃
n=1

An

)
\X

)
< ε/2,

while on the other hand,

µ(X \A) ≤ µ

(( ∞⋃
n=1

An

)
\A

)
= µ

( ∞⋃
n=k+1

An

)
< ε/2.

This implies the statement.

2.5 The Lebesgue Measure

In the following we are going to construct the Lebesgue measure. This is the
unique (as we shall see) measure on the real numbers assigning to an interval
its length. The construction proceeds in various stages.

Lemma 2.38. The �nite unions of intervals of the type [a, b), (−∞, a), and
[a,∞) together with ∅ form an algebra N of subsets of the real numbers.

Proof. Exercise.

Lemma 2.39. The prescription µ([a, b)) = b − a determines uniquely a

�nitely additive function µ : N → [0,∞] on the algebra N considered above.

Proof. Exercise.
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Lemma 2.40. The function µ : N → [0,∞] de�ned above is countably

additive and thus a measure.

Proof. Let {An}n∈N be a sequence of pairwise disjoint elements of N such
that A :=

⋃
n∈N ∈ N . We wish to show that

µ(A) =
∑
n∈N

µ(An).

By �nite additivity we have µ(A) ≥ µ(
⋃m

n=1An) =
∑m

n=1 µ(An) for all
m ∈ N and hence

µ(A) ≥
∑
n∈N

µ(An).

It remains to show the opposite inequality.
Assume at �rst that A is a �nite interval [a, b). Then, A is the disjoint

union of a sequence of intervals {Ik}k∈N with Ik = [ak, bk) in such a way that
each An is the �nite union of some Ik. (We also allow the degenerate case
ak = bk in which case Ik = ∅.) Fix now ε > 0 (with ε < b − a) and de�ne
I ′k := (ak − 2−(k+1)ε, bk) for all k ∈ N. Then, the open sets {I ′k}k∈N cover
the compact interval [a, b− ε/2]. Thus, there is a �nite set of indices I ⊂ N
such that [a, b − ε/2] ⊂

⋃
k∈I I

′
k. Then clearly also [a, b − ε/2) ⊂

⋃
k∈I I

′′
k ,

where I ′′k := [ak − 2−(k+1)ε, bk). By �nite additivity of µ we get

µ([a, b− ε/2)) ≤ µ

(⋃
k∈I

I ′′k

)
≤
∑
k∈I

µ
(
I ′′k
)

=
∑
k∈I

(
µ(Ik) + ε2−(k+1)

)
≤ ε/2 +

∑
k∈I

µ(Ik).

But since µ(A) = µ([a, b−ε/2))+ε/2, we �nd µ(A) ≤ ε+
∑

k∈I µ(Ik). Thus,
there exists m ∈ N such that µ(A) ≤ ε +

∑m
n=1 µ(An). But since ε was

arbitrary we can conclude µ(A) ≤
∑

n∈N µ(An) and hence equality.
Exercise.Complete the proof.

Proposition 2.41. Consider the real numbers with its σ-algebra B of Borel

sets. Then, the prescription µ([a, b)) := b− a uniquely extends to a measure

µ : B → [0,∞].

Proof. By Lemmas 2.38, 2.39 and 2.40 the prescription uniquely de�nes
a measure µ on the algebra N of unions of intervals of the type [a, b),
(−∞, a), and [a,∞). By Theorem 2.35 µ extends to a σ-algebra M con-
taining N . But the σ-algebra generated by N is the σ-algebra B of Borel
sets. (Exercise.Show this!) So, in particular, we get a measure on B. By
Proposition 2.36 this is unique since µ is σ-�nite on N . (Exercise.Show
this latter statement!)
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De�nition 2.42. The measure de�ned in the preceding Proposition is called
the Lebesgue measure on R.

Exercise 16. Consider the real numbers with the Lebesgue measure. De-
termine µ(Q) and µ(R \Q).

Exercise 17. The Cantor set C is a subset of the interval [0, 1]. It can be
described for example as

C =

∞⋂
n=0

(3n−1)/2⋃
k=0

[
2k

3n
,
2k + 1

3n

]
.

Show that µ(C) = 0.

Proposition 2.43. The Lebesgue measure is translation invariant, i.e., µ(A+
c) = µ(A) for any measurable A and c ∈ R.

Proof. Straightforward.

Exercise 18. Consider the following equivalence relation on R: Let x ∼ y
i� x−y ∈ Q. Now choose (using the axiom of choice) one representative out
of each equivalence class, such that this representative lies in [0, 1]. Call the
set obtained in this way A.

1. Show that (A+r)∩(A+s) = ∅ if r and s are distinct rational numbers.
Supposing that A is Lebesgue measurable, conclude that µ(A) = 0.

2. Show that R =
⋃

q∈Q(A+q). Supposing that A is Lebesgue measurable,
conclude that µ(A) > 0.

We obtain a contradiction showing that A is not Lebesgue measurable.

We can de�ne the Lebesgue measure more generally for Rn. The intervals
of the type [a, b) are replaced by products of such intervals. Otherwise the
construction proceeds in parallel.

Proposition 2.44. Consider Rn with its σ-algebra B of Borel sets. Then,

the prescription µ([a1, b1)× · · · × [an, bn)) = (b1 − a1) · · · (bn − an) uniquely
extends to a measure µ : B → [0,∞].

Exercise 19. Sketch the proof by explaining the changes with respect to
the one-dimensional case.


